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Abstract

In 1876, Alfred Bray Kempe stated a preliminary version of what nowadays is known
as Kempe‘s Universality Theorem: For any intersection of an algebraic curve with a
closed disc in the Euclidean real plane R2, there is a linkage translating a motion along
these curve segments to a straight line segment and vice-versa. Using linkages like the
Peaucellier inversor, which constrain a hinge to a straight line segment, it is thus possible
to piecewise delineate arbitrary algebraic curves. This is particularly remarkable in
combination with the Stone-Weierstraß approximation theorem, which states that
arbitrary continuous functions or curves inside a compact set can be interpolated in
any precision by polynomial functions or algebraic curves.

In this thesis, we present the constructions involved in assembling those linkages,
following Kempe‘s original approach and a more recent reformulation by Gao et al. In
addition, we shortly outline some recent results by Abbott et al. on generalizations of
Kempe‘s Universality Theorem to arbitrary dimensions.

The writing comes along with an implementation of a one-way simulation of the
linkage design in a dynamical geometry system called Cinderella, which features
so far unrivaled mathematical background for ruler-compass constructions without
specialization to particular applications. “One-way” here refers to the translation from
a movement on the curve to the straight line.

Information on the shape of the algebraic curve is retrieved via an Internet interface
from the ongoing project Xalci, provided by the Algorithms and Complexity working
group of the Max-Planck Institute for Computer Science. Their work aims on the
topological analysis and visualization of implicit algebraic curves while providing
guaranteed exactness of the results, and is to be extended for algebraic surfaces and
curves in higher dimensions.

Our simulation tries to give as much freedom to the user as possible, within the
limits set by computational complexity of a theoretically perfectly general approach. As
of the publishing of this thesis in the end of September 2008, the interface is publicly
available at http://www.math.uni-sb.de/ag/schreyer/Kempe-Linkage/.
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1 Introduction

1.1 Kempe Linkages

A fundamental task of engineering is the problem of assembling mechanisms which
make a distinct element move along a certain path. While recent achievements in
electrical engineering allow positioning of devices with incredible precision by means
of microcontrollers, larger scale applications still rely on classical solutions: gears
using shafts, chains, belts or ball bearings can be found in almost every imaginable
mechanical part, from wind engines down to the fans in your laptop. Although the
construction of these parts clearly involves difficulties, like natural restrictions on the
size, the robustness and degree of efficiency is often the telling argument for the use of
those classical components.

Probably the best known example is James Watt‘s “parallel motion” linkage, dating
back to 1784 and employed in early locomotives operated by steam engines. It is used
to convert the linear motion of the piston to drive the rotation of the wheels. While
the parallel motion almost perfectly answers it‘s purpose, it is far from a theoretically
perfect solution on the translation of a straight line to a circle.

In 1876, Alfred Bray Kempe used the components of Watt‘s engine to develop linkages
to piecewise delineate arbitrary algebraic curves, starting from their implicit polynomial
form. Here, a linkage is—like Watt‘s parallel motion—a device assembled of rigid
bars of fixed length, connected by hinges on their endpoints. The linkwork translates
to a crank describing a circle, or a straight line, which is proven to be equivalent by
Charles-Nicolas Peaucellier‘s invention of the Peaucellier cell which, in contrast to Watt‘s
linkage, is capable of exactly converting rotations to linear motions.

Probably the most elegant reformulation of Kempe‘s Universality Theorem, how it
is referred to these days, originates from William Thurston. By applying the Stone-
Weierstraß approximation theorem, he follows that there is a series of linkworks
approximating any continuous bounded plane curve. Thurston therefore summarized
that “there is a linkage that signs your name”, assuming you have a finite name.

Kempe slightly criticized Euclid for his stressing of ruler-compass construction
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1 Introduction

without actually giving a hint how to build an ideal ruler in the first place. Thus,
it appears ironical that Kempe himself is best known among mathematicians for his
false proof of the four colour theorem, and he also turned out to be careless in his
linkage design. However, both these works rendered a great service to the mathematical
community and have been corrected later; both proofs involve Kempe‘s original key
ideas.

With his work, Kempe eventually settled an important question in engineering from
the theoretical point of view; although he gave a constructive description of the design
of the linkwork, the complexity of the mechanisms exceeds the practically relevant limit.
It remained an open field to the engineers to figure out easier approximate solutions;
however, simulations of the linkages turned out to be useful in modern applications,
such as CAD and robotics.

Kempe‘s conclusions have been extended later to arbitrary dimensions. With some
additional restrictions not considered by him, there still is uncharted territory left to
further research.

1.2 Dynamic Geometry in Cinderella

Everyone of us may with mixed feelings remember the geometry lessons in school.
Probably nobody dealt with the class without some torn sheets of paper, with drawings
at the wrong scale or a cluttered choice of parameters for constructions.

Dynamic geometry systems (DGS) tackle this problem, allowing to arbitrarily zoom
and shift the viewport or modify some input elements and automatically rearrange
the depending parts accordingly. The current calculating capacity of usual personal
computers, available at cheap prices and in increasing quantities found in schools,
also allow interactive animations and tracing of elements under movements of others,
capable of drastically easing the teaching of the relation of mathematics and the “real
world”. Beyond the applications in high school lessons, dynamic geometry programs
increasingly aim to include more in-depth topics, like introductory projective geometry,
which demand a great deal of imagination from the student.

Amongst a number of tools mainly targeted at the profitable market of high school
pupils, Cinderella takes a special position. Throughout the twelve-years developement
process of Cinderella up to now, the authors Ulrich Kortenkamp and Jürgen Richter-
Gebert took great care of implementing a thorough mathematical model of geometry.

Besides features such as polar views on constructions or the representation of hy-
perbolic geometry, there are two major differences in design compared to standard
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1.3 Algebraic Geometry Visualization in Xalci

systems: First, all elements of a Cinderella construction are considered in the complex
projective plane, which guarantees consistency of constructions even in degenerate
positions. Second, Cinderella strictly adheres the concept of continuous movements.
Both features are—in this extent—only competed by a discontinued project named
“pdb“ (“projective drawing board”) by Harald Winroth, whose workings on dynamic
geometry theory the authors of Cinderella base on. One benefit of this approach is that,
up to now, Cinderella is the only dynamic geometry system able to draw complete loci,
i.e. traces of objects under continuous movements of others.

An additional advantage of Cinderella for more complex constructions is it‘s embed-
ded script editor, which grants the full power of a high-level programming language
with focus on it‘s geometric operations. Hereby, it spares the user from the neces-
sary calculations performed in background—it suffices to deal with the constructions
semantics.

Finally, Cinderella offers the possibility to work embedded in web pages as a Java
applet, which renders a great opportunity for proof-of-concept presentations.

These outstanding capabilities as well as Kortenkamp‘s offer to support our project
are our reasons to choose Cinderella as the basis for an implementation of Kempe‘s
algorithm in a modern geometry environment.

1.3 Algebraic Geometry Visualization in Xalci

Rendering of algebraic curves and surfaces are the main underlying procedures of
almost every recent geometric modeling application. However this is typically done
within tight boundaries on the complexity of the mathematical object. Font rendering,
standard vector drawing tools or 3D modeling and computer aided design (CAD) usu-
ally employ at most nonuniform rational B-spline surfaces (NURBS), which nowadays
can be animated in real-time without major trouble for reasonable input sizes.

Still there is a need for handling higher degree objects without a given parametriza-
tion, respecting exactness guarantees on both shape and topology. For example,
industrial tools for computer aided manufacturing in specialized high-precision appli-
cations have to provide seemless transitions which exceed the possibilities of spline
approximations.

This is the long-term goal of Xalci, part of the EXACUS project for Exact Algorithms
on Curves and Surfaces at the Algorithms and Complexity working group of the
Max-Planck-Institute for Computer Science in Saarbrücken. Xalci treats the topological
correct analysis of arrangements of implicit algebraic curves, to be extended to also

3



1 Introduction

cover space curves and surfaces. Subsequently, simpler subdivisions with easy topology
are each rasterized independently, giving an exact visualization of the curve up to
output resolution of the images.

While the algorithms or stand-alone implementations are not publicly available (yet),
the results can be seen via a Flash web interface at http://exacus.mpi-inf.mpg.de/
cgi-bin/xalci.cgi. This motivated the idea of utilizing the exisiting web transport
to gather the shape information of curves needed for rendering and animation of the
Kempe mechanisms, kindly supported by the Xalci team, in particular represented by
Pavel Emeliyanenko.

Together with Cinderella‘s web presentation features, we can provide a comprehensive
simulation of the line-curve-translation through a easily usable web interface.

4
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2 Basic Linkages

In this chapter, we present basic linkages, which will be our elementary toolkit for the
more complicated constructions to follow. We require the reader to be familiar with
usual well-known results from elementary geometry; a basic knowledge of algebraic
geometry is assumed throughout the following chapters.

In particular, in section 2.1 we discuss early attempts on describing a straight line by
means of a linkage. Our goal is the presentation of the Peaucellier-Lipkin cell, a linkage
which solves this problem exactly. Afterwards, we will express translation of lengths
(2.2) as well as rotation (2.3), and addition and multiplication of angles (2.4) in terms of
mechanics.

The linkworks given in this chapter are taken from [GZCG02], and are chosen with
theoretical aspects in mind. Especially the number of links—i.e. the combinatorial
complexity of the mechanisms—is stressed. For practical applications, a number of
other factors have to be considered, for example the smoothness of movements or the
stability of the construction.

For this reason, the linkages presented here are by no means unique. However, for
some akin constructions of similar simplicity, Kempe writes: [Kem77]

In this form, which is a very compact one, the motion has been applied
in a beautiful manner to the air engines which are employed to ventilate
the Houses of Parliament. The ease of working and absence of friction and
noise is very remarkable.

2.1 Straight Line Motion

2.1.1 How to Draw a Straight Line?

The first problem we encounter in finding linkages for algebraic curves seems to be
the most simple case possible: How can we describe a straight line? In fact, this very
problem is what inspired Kempe to give a lecture about linkages in 1877. In the lecture
notes ([Kem77]) he states
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2 Basic Linkages

But the straight line, how are we going to describe that? Euclid defines it as
“lying evenly between its extreme points.” This does not help us much. Our
text-books say that the first and second Postulates postulate a ruler. But
surely that is begging the question. If we are to draw a straight line with a
ruler, the ruler must itself have a straight edge; and how are we going to
make the edge straight? We come back to our starting point.

To the best of our knowledge, it is not clear whether Euclid itself recognized this
problem.

For start, we denote that—given a perfect plane—a circle is straightforward to design
by linkages. We pick some center point on the plane and stick a pivot there; on this
pivot, we attach any kind of rigid material. This allows a circular motion of the shape
around the bolt. We now choose some arbitrary point on the shape; tracing this point
while rotating the shape yields, from the theoretical point of view, a perfect circle.

Now the reader might ask where the difference lies in the imagination of a perfect
ruler and this construction, involving “a perfect plane” and infinitely small “points”
and pivots. For our linkage, we are able to adopt the precision according to our needs.
In particular, we do not demand the existence of a sample piece of the result. Instead,
we rely on basic elements whose overall influence on the relative error of the result
vanishes proportional to the size of the linkage—i.e., the radius of the circle. In a perfect
scenario both the pivot and it‘s bearing are circular; however, this is not due to the
shape of the curve we want to trace, but a basic requirement for any link of an arbitrary
mechanism to achieve smooth transitions.

If we do not have high-precision components for our drawing, we might just take
some branch as pivot and a tensed rope—which essentially fulfills the same require-
ments as a rigid shape—and draw a circle in a larger scale, achieving a “roundness”
that may well compete today’s industrial parts.

It remains to note that the basic plane is a real restriction; on the other hand, the same
holds for all ruler-compass constructions, so we might have to accept it for granted.

2.1.2 An Inexact Approach: Watt‘s linkage

Despite it‘s seemingly easy nature and high impact on technicial engineering, the
straight-line problem remained unsolved for long time. The best known approach,
which was directly influenced by the needs of upcoming technology—namely loco-
motives employing a the steam engine—is James Watt‘s Parralel Motion, dating back
to 1784. Despite it‘s name, Watt did not succeed in generating parallel curves; in fact,
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2.1 Straight Line Motion

Figure 2.1: Watt‘s linkage

he could not even solve the straight-line problem. However, for the sake of historical
background of linkages, we will shortly explain Watt‘s linkage and the resulting curve.

The linkage (figure 2.1) consists of three bars, consecutively connected by joints. The
outer bars share the same length and are each fixed by pivots on the underlying plane.

Now, we trace the center point of the inner bar under rotation of any of the outer
bars. (Of course, it does not matter which one we move, since each determines the
position of the other throughout the motion.)

The resulting curve, called Watt‘s lemniscate, is an algebraic curve of degree six.
From a mean position, i.e. a situation where the pencil exactly coincides with the center
of the pivots, the linkage approximates a straight line. The farther we go from the
mean, the larger gets the deviance from the line; after a full rotation, we end up with a
closed curve. We can thus state that Watt‘s linkage does not allow any configuration to
describe a straight line, because by Bézout‘s theorem a component of an algebraic curve
cannot both contain a straight line and at the same time be closed in the real plane R2.

2.1.3 An Exact Solution: The Peaucellier-Lipkin Cell

The first exact solution to the straight-line problem by a planar linkage was given in
1864 by Charles-Nicolas Peaucellier. His invention was not recognized by the scientific
community in the first place, until Lippman Linkin rediscovered and published his
work.

The Peaucellier-Lipkin linkage (or just Peaucellier cell) consists of seven bars in a configu-
ration as shown in figure 2.2. Here, |AB| = |BC| = |CD| = |DA| = a, |PB| = |PD| = b,
and |OP| = |OA| = c. Furthermore, let E be the intersection point of the diagonals AC
and BD of the rhombus ABCD.

7



2 Basic Linkages

Figure 2.2: The Peaucellier-Lipkin cell

It holds

|PA| · |PC| = (|PE| − |AE|) · (|PE|+ |AE|)
= |PE|2 − |AE|2

= b2 − |BE|2 − |AE|2

= b2 − a2

= const

Thus, C is the inversion point of A with respect to some circle with center P. The
inverse of any circle through P with respect to this circle is a line; in particular, this
holds for the circle centered in O. Therefore, when A rotates around the pivot O, the
trace of C is a straight line perpendicular to PO.

Due to the limited length of the links, the locus of C under all possible configurations
of the linkwork is not a complete line, but a line segment, called a slot. This amounts
to performing the necessary calculations in the real numbers. If we consider an
algebraically closed field, the resulting curve actually is a line, i.e. the vanishing locus
of a two-variate polynomial of degree 1.

In particular, in the complex numbers C, where the Cinderella‘s computations take
place, the hinges B and D eventually leave the real plane. However, the pencil C stays
on a real line. Details as well as a similar example are given in section 4.1.1.

8



2.2 The Translator

Figure 2.3: The Peaucellier cell on slot

2.1.4 The Peaucellier Cell on Slot

We can exploit this limitation of movement to constrain a point in a slot. Starting from
two distinct points X and Y, we attach bars of pairwise equal length to get O and P.

The extremal position of the Peaucellier cell occurs if and only if B and D coincide
and, thus, the bars AB and BC and likewise AD and DC are on the same line XP (or
YP). Accordingly, we choose a = |XP|−c

2 and b = |XP| − a to get a linkage tracing out
the segment XY.

Note that we do not rely an any point on XY but the pivots itself; therefore, we are
able to specify the slot without a template.

From now, when we say that a point is in a slot, it means that we use this very
modified Peaucellier linkage to do so. The slot itself still can be moved freely along
with the attached linkwork; we say that the slot is on a platform determined by X and
Y.

2.2 The Translator

The next tool to be used in linkage design translates a distance to some other place.
The most basic idea is to build a parallelogram, in which the bars AB and ST and AS
and BT pairwise share the same length. If we attach A and B to some pivots, moving S
in the plane accordingly moves T; ST is a translation of AB.

9



2 Basic Linkages

(a) (b)

Figure 2.4: Two translators.

Note that the length of the bars is both a necessary and sufficient condition for the
shape of the linkwork, as long as we guarantee that no crossings of the bars occur,
leading to an antiparallelogram.

While this simple mechanism works flawlessly in theory, it is not convenient, since
the distances |AB| and |AS| are fixed. We can do better with a combination of four
such translators (see figure 2.4 b). The correctness of this linkage directly results from
the fact that parallelity is an equivalence relation of lines in the plane and, as such, in
particular transitive.

For the sake of simplicity, we can assume that any parallel bars have the same length.
This assumption is without loss of generality; the only real restriction is given by the
sum of the lengths of the bars compared to |AB| and |AS|.

When in the following we say that a segment or distance is translated to another
point, we refer to the use of this refined linkage to achieve this.

2.3 The Rotator

To complete the movements of segments in the plane, in addition to translation we
have to be able to perform rotations. Figure 2.5 shows a linkwork to achieve this.

Here, |OA| = |OB|, |AC| = |BC|, |DS| = |DT|, and |DU| = |DV|. |OA| = |OB| is
not a real restriction; if source and target direction (along OA or OB) are given with

10



2.3 The Rotator

Figure 2.5: The distance copier

distinct lengths, say |OB′| > |OA|, we use a platform to constrain B in the slot OB′.
Attaching the rotator to the pencil of the Peaucellier linkage accordingly forces a unique
position of B where |OA| = |OB|.

In the same manner, S, U, T and V are constrained in OA or OB by platforms. Again,
the positions of U, V and, thus, also T are uniquely determined by the position of S in
it‘s slot.

Now we observe that the construction formed by those restrictions consists of three
kites OSDT, OUDV and OACB, which share their axis of symmetry. In particular, OS
and OT are the images of each other under mirroring along OC, yielding |OS| = |OT|.

2.3.1 The Distance Copier

Attaching a translator to OT extends this rotator to the distance copier, which assures
that S′T′ arises as the image of OS under an Euclidean move.

Note that, although the translator is sketched but with a parallelogram, we need the
more complex translator (figure 2.4 b) in this situation: in general, we do not know
|OS| in advance and thus need the flexibility of distances granted by this translator, not
only to be able to move the linkage, but even to assemble it in a position where all links
fit in the first place.

11



2 Basic Linkages

2.4 Angle Adder and Multiplicator

We finish the presentation of the basic linkworks with two constructions on angle
operations. In particular, we show that linkage designs include all necessary tools to
implement the Z-module structure of angles.

2.4.1 The Angle Adder

A common task in linkage design is the addition of a (finite) number of angles. This
can easily be achieved by inductively adding two angles by means of an angle adder
consisting of distance copiers:

Suppose we are given two angles ]AOB and ]CO′D. W.l.o.g. we can assume
|OA| = |OB| = |O′C| = |O′D|; otherwise, we use platforms to constrain the links
accordingly. We then attach two distance copiers to move CO′D such that the image
of O′C is OA, yielding ]CO′D = ]C′O′′D′ = ]AOD′, and now use another distance
copier to move |AB| to D′T such that AB is rotated by the angle ]AOD′ = ]CO′D.

Since we demanded the lengths of the legs to be equal, both AB and AD′ are chords
in a circle with center O. Therefore, ]AOB + ]CO′D = ]AOB + ]AOD′ = ]AOT.

2.4.2 The Angle Multiplicator

Now suppose we want to construct an angle multiplicator, i.e. a mechanism to multiply
an angle by an integer. Again, we can assume both legs to share the same lengths, so
we can use a distance copier in the same manner to double, triple, . . . the angle.

However, there is an easier approach to solve this special case, shown in figure 2.6.
Here OADB and OBEC are antiparallelograms; the links satisfy |OA| · |OC| = |OB|2 ⇔
|OA|
|OB| = |OB|

|OC| .

Of course we may not allow |OA| = |OB| in this setting, which leads to the degenerate
position D = 0. This again is not a real restriction, since we can employ platforms to
get distinct lengths of the legs. In general, we will have to do so anyway, because we
have to guarantee the ratio of the bar lengths.

Since |OA|
|OB| = |OB|

|OC| , OADB is similar to OBEC, yielding ]AOB = ]BOC and thus
]AOC = ]AOB + ]BOC = 2]AOB. Iterating the construction, we can get a n times
angle multiplicator for arbitrary, but fixed n ∈ N.

Kempe [Kem76] uses the term angle reversor to call the multiplicator, because ]BOA =
−]COB; thus the mechanism also allows to change the orientation of arbitrary angles.
Together with the angle adder, we are able to subtract angles. As a side remark, which
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2.4 Angle Adder and Multiplicator

Figure 2.6: The angle multiplicator

is not necessary for our work, we further note that the multiplicator also allows to
bisect angles by attaching O, A and C to the relevant points; then, ]AOB = 1

2]AOC.

13





3 Kempe Linkages for Plane Curves

The linkworks presented in chapter 2 are our tools for expressing algebraic terms in
mechanisms. We have already seen in the discussion of the Peaucellier inversor that the
most basic operation in linkage design is rotation. This suggests that we do better not
to describe algebraic curves in the Euclidean plane in Cartesian coordinates as usual,
but merely use some variant of a polar coordinate system.

In this chapter we thus explain how to express polynomials and, thus, algebraic
curves by means of trigonometric expressions. We will see that what Abbott et al.
[ABD08] call “trigonometric algebra” allows to reduce all occuring terms to some
simple canonical form. In particular, we find out how to cancel arbitrary occurrences of
any variable using linkages attached to only two points, the origin and any chosen unit
representing the x-axis.

This directly leads to a constructive proof for Kempe‘s Universality Theorem, which
states that for every bounded part of a plane algebraic curve there is a linkwork
that translates a motion along the curve to a motion on a straight line segment. In
consequence, there exists a series of linkworks to delineate any given algebraic curve in
any region of the plane.

We close the chapter with a discussion of the complexity of this linkwork, including
some recent results of Abbott et al. [ABD08], who generalize Kempe‘s work to arbitrary
dimensions, and shortly explain their criticism and corrections on Kempe‘s proof.

3.1 Trigonometric Algebra

Throughout this section and the following we give a proof of

Kempe‘s Universality Theorem. Let f ∈ R[x, y] be a polynomial defining an algebraic
curve C = V( f ) =

{
(x, y) ∈ R2 : f (x, y) = 0

}
, and D be a closed disc in the plane.

Then there exists a linkwork translating a finite motion of a point S along a straight line
segment to a motion of a point P along C ∩ D and vice-versa.

Note that this formulation does not imply a continuous or even connected movement
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3 Kempe Linkages for Plane Curves

Figure 3.1: The parallelogram defined by P

of the linkage; we only demand that there is a single linkage s.t. a possible configuration
of the bars, with S coinciding with the line segment, exists if and only if P ∈ C ∩ D.

For the proof, suppose we start with a given twovariate polynomial of total degree d
in Cartesian coordinates

f (x, y) = ∑
0≤i+j≤d

ai,jxiyj ∈ R[x, y], (3.1)

implicitly describing the algebraic curve C = V( f ) of it‘s roots.

We demand the origin O and a unit X, determining the Cartesian x-axis, to be
fixed. For any given point P = (x, y) ∈ D in a certain distance to O we can attach
a simple parallelogram linkage as shown in figure 3.1. The point P is free to move,
constrained only by the lengths m and n of the brackets of the parallelogram; these will
be determined later, but obviously have to be positive.

The bars of the parallelogram give angles ϕ and θ with the x-axis, so we can express
P by

x := m cos ϕ + n cos θ

y := m sin ϕ + n sin θ.
(3.2)

Substituting this into the polynomial of the curve (3.1) and plugging in the following
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3.1 Trigonometric Algebra

identities

sin α = cos
(
α− π

2

)
, (3.3)

cosn α =
1
2n

n

∑
k=0

(
n
k

)
cos ((n− 2k)α) and (3.4)

cos α cos β =
1
2

(cos(α + β) + cos(α− β)) (3.5)

yields

f (x, y)
(3.2)
= ∑

0≤i+j≤d
ai,j (m cos ϕ + n cos θ)i (m sin ϕ + n sin θ)j

(3.3)
= ∑

0≤i+j≤d
ai,j (m cos ϕ + n cos θ)i (m cos

(
ϕ− π

2

)
+ n cos

(
θ − π

2

))j

= ∑
0≤i+j≤d

ai,j

(
i

∑
k=0

ci,kmkni−k cosk ϕ cosi−k θ

)
·

·
(

j

∑
l=0

cj,lmlnj−l cosl (ϕ− π
2

)
cosj−l (θ − π

2

))

= ∑
0≤i+j≤d

ai,j

i

∑
k=0

j

∑
l=0

ci,kcj,lmk+lni+j−k−l cosk ϕ cosi−k θ cosl (ϕ− π
2

)
cosj−l (θ − π

2

)
(3.4)
=

(3.5)
∑

0≤s≤d
∑

−d≤t≤d

(
as,t cos(sϕ + tθ) + bs,t cos

(
sϕ + tϕ− π

2

))
.

For s = t = 0 we can isolate the constant terms to finally get

f (x, y) = c + ∑
0≤s≤d, −d≤t≤d

(s,t) 6=(0,0)

(
as,t cos(sϕ + tθ) + bs,t cos

(
sϕ + tϕ− π

2

))
(3.6)

where as,t, bs,t, c ∈ R.

Gao et al. [GZCG02] point out that we can simplify this even further to get

f (x, y) = c + ∑
0≤s≤d, −d≤t≤d

(s,t) 6=(0,0)

(ds,t cos(sϕ + tθ + ψs,t))

where c, ds,t, ψs,t ∈ R. This simplification however is, despite it‘s minor impact on the
theoretical complexity of the construction, objectionable for our needs, since ψs,t in
general is not constructible by ruler-compass constructions even if f (x, y) ∈ Q[x, y].
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3 Kempe Linkages for Plane Curves

For the theory this does not matter; here we can imagine arbitrary lengths. We will go
into this topic in depth in chapter 4.

3.2 Kempe‘s Straight Line Linkwork

After all these transformations, we get a rephrased version of the defining equation
of the algebraic curve, which depends on m, n, ϕ and θ instead of x and y. Since for
an instance of a construction the bar lengths m and n of the parallelogram linkage
attached to P stay fixed, we will from now on refer to the polynomial of equation (3.1)
as f̃m,n(ϕ, θ) := f (m cos ϕ + n cos θ, m sin ϕ + n sin θ).

Note that this is nothing but a translation into another coordinate system w.r.t. m and
n; if and only if the angles ϕ and θ are chosen s.t. the corresponding point P = (x, y)
satisfies f (x, y) = 0, f̃m,n will equally vanish for those angles. Further, the coefficients
as,t, bs,t and c do not depend on ϕ and θ, but are determined only by m and n.

We will now design a linkwork to achieve that for an arbitrary P on the curve C, a
distinguished hinge of the linkwork will be on a fixed straight line. We proceed as
follows:

0. Let O be the origin of the coordinate system, X the unit point on the x-axis and
A1, B1 /∈ {O, P} be the endpoints of the parallelogram OA1PB1 s.t. ]XOA1 = ϕ

and ]XOB1 = θ.

1. First, we construct a static frame to get a link Y, corresponding to the unit on the
y-axis. Here it is sufficient to put a isosceles triangle with bar lengths twice 1 and√

2 on OX.1

2. For all integers s and t ≤ d occuring in (3.1), we attach angle multiplicators
to the bars OA1 and OB1 to construct links OAs, s = 2, . . . , u and OBt, t =
−d, . . . ,−1, 2, . . . , d, satisfying ]XOAs = sϕ and ]XOBt = tθ.

3. By means of angle adders, we construct links OCs,t from the As and Bt satisfying
]XOCs,t = ]XOAs + ]XOBt = sϕ + tθ.

1While this leaves no degree of freedom on the shape of the triangle, we cannot avoid the congruent case,
where we actually get −Y. This is a problem intrinsic to every construction of Y; to get a determined
orientation, we have to also fix a third point in addition to O and X, which ideally is Y.

Furthermore, if we want to avoid the irrational ratio of lengths, we can use bar lengths corresponding
to a Pythagorean triple to get the angle π

2 and use a distance copier to transmit the length OX on the
y-axis.
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3.2 Kempe‘s Straight Line Linkwork

Figure 3.2: The final translations of Kempe‘s construction

4. In the same manner, we use angle adders on the OCs,t and OY to get points Ds,t

with ]XODs,t = ]XOCs,t −]XOY = sϕ + tθ − π
2 .

5. For every coefficient as,t and bs,t in (3.1), we attach a bar OEs,t or OFs,t of corre-
sponding length to scale OCs,t or ODs,t s.t. |OEs,t| = as,t, ]XOEs,t = sϕ + tθ and
|OFs,t| = bs,t, ]XOFst = sϕ + tθ − π

2 .

6. Finally, we geometrically represent the summation by a chain of translators:
We translate OE0,−d to E0,−(d−1) to get KE

0,−(d−1), OKE
0,−(d−1) to OE0,−(d−2) to get

KE
0,−(d−2), . . . , OE1,−d to KE

0,d to get KE
1,−(d−1), . . . , to get KE

d,d. In the same manner,
we add the Fs,t, to ultimately obtain KF

d,d =: S.

Now, by construction, the links Es,t and Fs,t have x-coordinate equal to a cos(sϕ + tθ)
and b cos

(
sϕ + tθ − π

2

)
. Therefore, the x-coordinate of S is

x = ∑
0≤s≤d, −d≤t≤d

(s,t) 6=(0,0)

(
as,t cos(sϕ + tθ) + bs,t cos

(
sϕ + tϕ− π

2

))
= f̃m,n(ϕ, θ)− c

= f (x, y)− c.

When P moves along C, f (P) = f (x, y) = f̃m,n(ϕ, θ) = 0; accordingly, for S

x = f (x, y)− c = −c
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3 Kempe Linkages for Plane Curves

holds. Vice-versa, if S moves along the line V(x + c), the locus of P is the curve
C = V( f ).

This can be achieved by connecting S to a Peaucellier cell, constraining S to V(x + c).
Rotating the crank of the Peaucellier inversor, S traces out a straight line segment, and
the locus of P is a part of C.

It remains to consider the choice of the bar lengths, obviously corresponding to the
radius of the disc D in the preconditions of the Universality Theorem. We demand P
to be freely movable in D, which immediately imposes the conditions max(m, n)−
min(m, n) ≤ inf {d(O, p) : p ∈ D} and m + n ≥ sup {d(O, p) : p ∈ D}, where d(·, ·)
denotes the Euclidean distance.

This is easily possible by choosing m = n = 1
2 sup {d(O, p) : p ∈ D} < ∞, since D

is bounded. For a fixed choice of m and n, all intermediate links of the linkwork are
restricted to be in a bounded region of the plane since P stays inside a closed disc of
radius m + n around O. Thus, we can select the size of the links as needed during the
construction. This completes the proof of Kempe‘s Universality Theorem.

For the sake of completeness, we remark that by iteratively enlarging m and n we
can draw any region of an algebraic curve. This gives a simple reformulation of

Kempe‘s Universality Theorem (alternative version). Let f ∈ R[x, y] be a polynomial
defining an algebraic curve C = V( f ) =

{
(x, y) ∈ R2 : f (x, y) = 0

}
in the plane.

Then there exists a series of linkworks s.t. for any bounded region S ⊂ R2 the series contains
a linkage translating a motion of a point S along a straight line segment to a motion of a point
P along C ∩ S and vice-versa.

By applying Stone-Weierstraß approximation theorem, we can further conclude the

Sign Your Name Theorem (Thurston). There exists a series of linkworks signing your
(finite) name in arbitrary precision.

3.3 Complexity of the Kempe Linkage

Kempe himself states in the original publication of his work [Kem76]

It is hardly necessary to add, that this method would not be practically
useful on account of the complexity of the linkwork employed, a necessary
consequence of the perfect generality of the demonstration. The method
has, however, an interest, as showing that there is a way of drawing any
given case ; and the variety of methods of expressing particular functions
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3.3 Complexity of the Kempe Linkage

that have already been discovered renders it in the highest degree probable
that in every case a simpler method can be found. There is still, therefore, a
wide field open to the mathematical artist to discover the simplest linkworks
that will describe particular curves.

The extension of this demonstration to curves of double curvature and
surfaces clearly involves no difficulty.

While Kempe was wrong with his last sentence, (see section 3.4) he probably is
perfectly right with the first part.

Gao et al. presented [GZCG02] a proof of a complexity of O(d4) bars for a linkage
describing a curve of degree d, which turned out to be clearly overestimated. We
will—according to the work of Abbott et al. [ABD08]—proof the number of bars to be
in O(d2), which is optimal.

First, we state that the number of terms in formulation (3.1) of f̃ does not exceed d2:
there are at most d + 1 possible choices of s and 2d + 1 choices of t, which means that
the number of as,t and bs,t sums up to O(d2). Furthermore, we note that each of the
basic linkages presented in chapter 2 and used in the construction only consists of a
finite number of elements.

In the construction, for step 0 and 1 we obviously only have to use a constant number
of bars to establish the coordinate system. The construction of the angles sϕ and tθ is
done once for each value of s and t, totalling to O(d− 2 + 2d− 1) = O(d). Then we
need to use a number of angle adders matching the non-canceling terms cos(sϕ + tθ)
and cos(sϕ + tθ − π

2 ) in (3.1), which is in O(d2). In step 5 each of those angles is
attached a bar to scale it‘s length; this likewise is in O(d2).

Finally, we need to sum up all the terms of f̃ by translators, which corresponds to
the hinges resulting from step 5 and thus likewise is in O(d2). Gao et al. used a slightly
different approach on attaching the translators, following their further simplification of
(3.1), and apparently thus miscounted the links needed.

Our results match those of Abbott et al. [ABD08], who prove a number of O
(
(n+2m

2m )
)

bars to be both sufficient and optimal for the tracing of the vanishing locus of a
polynomial of total degree n in R[x1, y1, . . . , xm, ym].

Note that this only refers to the mechanical complexity of the construction. For a
computational solution we have to tackle two problems:

1. The linkwork essentially serves as an analog calculator; when we want to join
two bars, we can just grab their endpoints and move them to a single valid point
for join. In consequence, all other links of the mechanism not pinned to the
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3 Kempe Linkages for Plane Curves

plane may change their position to fit the two boundary constraints. In the same
manner, once the construction is done, a force on every element instantly alters
the whole linkwork configuration accordingly.

In a simulation on a digital computer, this means that we have to solve a system
of equations for all links simultaneously. In particular, finding an allowed con-
figuration of bars satisfying that S lies on the line V(x + c) amounts to finding a
zero of the polynomial f , which is intractable for higher degrees.

2. Even if we restrict ourselves to only move P and adjust the mechanism to fit, we
have to take the complexity of the coefficients as,t, bs,t and c into account to just
determine the bar lengths. Usually, we talk about a polynomial f ∈ Q[x, y] with
rational coefficients, or, equivalently by multiplying with the largest common
multiple of the divisors of the coefficients, f ∈ Z[x, y].

In this case the necessary equations have to be solved either approximately, or the
computation time has to be calculated depending of the coefficient complexity
of the input, with respect to computing rationals in arbitrary precision or even
irrational numbers, represented for example by isolating intervals and Sturm
sequences.

3.4 Generalizations and Criticism of Kempe‘s Proof and Open

Questions

Abbott states in his thesis [ABD08], that

Kempe [. . .] published a surprising proof that one could build a linkage
such that a pen placed at a single vertex could draw the intersection of any
algebraic curve with any closed disk. [. . .]

Kempe‘s proof was flawed, however, because his constructions had addi-
tional configurations beyond those he intended them to have.

Why these apprehensions do not impact our work will be explained in the next
chapter; here it shall suffice to give an example of the most simple linkage failing, and
the idea on how to solve this.

Consider a parallelogram linkage ABCD as shown in figure 3.3, which is used all
over the place in translators. If now the linkwork is elongated to it‘s maximum extent,
both Kempe and we expect the motion to continue by a rotation of C and D around
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3.4 Generalizations and Criticism of Kempe‘s Proof and Open Questions

(a) parallelogram (b) degenerate position (c) contraparallelogram

Figure 3.3: Three possible configurations of a simple translator linkage

B or A in the same direction. However, from the theoretical point of view there is no
reasoning for this assumption, although in reality inertia or other arguments of physics
may make it appear as such.

Therefore, Abbott et al. propose to use a braced parallelogram, which consists of an
additional bar, connecting the midpoints of two opposite sides (figure 3.4). This simple

Figure 3.4: A braced parallelogram

addition, which has no influence on the order of the complexity, effectively avoids the
problem:

In a (nondegenerate) contraparallelogram configuration, EF = AC+BD
2 , where E and

F denote the midpoints of the sides AB and CD. Now assume there is an intersection
X of AD and BC. By the triangle inequality,

2 |EF| = |AC|+ |BD| < (|AX|+ |XC|) + (|BX|+ |XD|)

= (|AX|+ |XD|) + (|BX|+ |XC|)

= |AD|+ |BC|

= 2 BC,

but by definition of E and F we know |EF| = |BC|; therefore, only the degenerate
antiparallelogram configuration exists, which at the same time is a degenerate parallel-
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3 Kempe Linkages for Plane Curves

ogram and thus allowed. In a similar manner, Abbott et al. extend the reversor linkage
to stay a contraparallelogram.

Furthermore, they discuss the concept of “rigid continuous constructability”, which
probably matches the intuition of Kempe‘s original work. The term refers to mecha-
nisms that delineate a given connected set S continuously, i.e.—in analogy to the term
in analysis—without sudden reconfigurations of the linkage during the drawing of the
set, and rigidly, which means that for every point p ∈ S , there are only finitely many
configurations of the linkage s.t. p is represented by the linkage. In consequence, the
combination of both properties means that a linkage has no motions other than those
absolutely necessary to delineate S . For a further examination of the topic, we refer to
[ABD08].

While rigid constructability is not an issue in the Euclidean plane, it turned out to
be a tough one for higher dimensions. Neither Abbott et al. nor King [Kin98], who
analyzed the topic using a different kind of linkages, have so far been able to solve the
question which drawable sets in dimension n > 2 are rigidly constructible, although
they independently proved algebraic varieties, in particular algebraic curves in n-space
and hypersurfaces, to be continuously constructible by series of linkworks.

Finally, it is not yet known whether there are linkages delineating an arbitrary large
part of a connected component of general curves in a single smooth motion of the crank
of the Peaucellier cell constraining S to V(x + c). Intuitively this means that, while all
points on C can be reached during or at the ends of continuous motions, there can be
branches in the configuration space s.t. we have to “turn around” and redo a motion
on V(x + bc) to get a different outcome of the arrangement of bars.
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4 Simulation of Kempe Linkages using

Cinderella and Xalci

The major part of this thesis is the developement of a simulation of Kempe‘s line-curve-
translation, featuring the dynamic geometry system Cinderella and the algebraic curve
visualization of Xalci. The results of this work discussed throughout this chapter can
be found online at http://www.math.uni-sb.de/ag/schreyer/Kempe-Linkage/.

As mentioned in section 3.3, linkworks exceed the classical calculation model by
simultaneously performing movements according to the constraints induced by the
lengths of the rigid bars, corresponding to equation solving in computing, in essentially
no time. While this is theoretically possible to mimic on computers, current calculating
capacities allow to do so for none but very easy examples in real-time due to the large
number and complexity of the constraints involved. Arbitrary deformation models are
out of reach even for state-of-the-art techniques.

Consequently, all existing DGS including Cinderella use an acyclic dependency graph
approach, where every elements position only influences the construction parts con-
tained in it‘s childrens layers. Accordingly, it is not possible to move elements whose
position is fixed without any degree of freedom by boundary constraints, as is with the
point S on the straight line resulting from Kempe‘s construction.

On the other hand, the applications allow to easily state preconditions which aren’t
obvious in mechanism design. For example, restricting a point to be free only along a
straight line is the most simple thing in the world of dynamic geometry applications.

Accordingly, we do not try to implement the linkages in every detail, but instead
developed a modified version adapted to fit the needs of a dynamic construction
simulation.

4.1 Some Design Aspects of Cinderella

Throughout this setion, we will discuss some key features of Cinderella which influence
our implementation. The statements mainly rely on Ulrich Kortenkamp‘s doctoral
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4 Simulation of Kempe Linkages using Cinderella and Xalci

thesis “Foundations of Dynamic Geometry” [Kor99] from 1999, in which he presents
the theory behind Cinderella. The scripting abilities have been added later, thus their
covering is based on the on-line documentation of the program [KRG].

Most of the mentioned characteristics which distinguish Cinderella from other ap-
proaches, are controversely discussed, especially among the educational community,
providing plenty of information material to any interested reader.

4.1.1 Complex Projective Geometry

To achieve the most comprehensive insight in geometric theorems possible, all co-
ordinates and intermediate values in Cinderella‘s computations are evaluated in the
complex projective plane. Although the viewport naturally only covers a part of the real

Figure 4.1: The perpendicular bisector of a segment, constructed as the line through
the intersection points of two circles

Euclidean plane, this is a highly useful feature to have, despite it‘s irritating appearance
at the first glance. For example (see figure 4.1), the perpendicular bisector of a segment
can be constructed by drawing a line through the intersections of two equally sized
circles around the endpoints. If now during a construction process the endpoints alter
their position and the length of the segment exceeds the diameter of the circles, the
intersections leave the real plane. However, the complex affine linear subspace defined
by their difference vector still includes the real bisector and is thus displayed as such.

A related topic is the consideration of elements at infinity in the projective space. A
simple example is the intersection of two lines, as depicted in figure 4.2. When the
dashed line rotates s.t. it becomes parallel to another line, their intersection point is still
well-defined in the projective plane. Cinderella not only handles this case internally, but
is also able to show the situation in a spherical viewport.

Together those approaches allow a very thorough handling of constructions. Many
degenerate cases in the real affine plane turn out to be perfectly straightforward in
complex projective geometry. In particular, the user may specify constructions which
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(a) Euclidean view (b) spherical view

Figure 4.2: The intersection of two parallel lines at infinity

are considered to be invalid by other applications.

Automatical input generation benefits in additional extent, because a design can be
done in one go and moved to a nonsingular position later. The treatment of degenerate
cases in R2 is left to Cinderella and cannot cause any inconsistencies.

4.1.2 Continuity

As the term “dynamic geometry” suggests, constructions can be modified once they
are established. The users then expect a construction to behave “nicely” when input
elements are moved, which means that no sudden jumps occur when the input is
changed continuously. The situation in figure 4.3 serves as an example for the behaviour
of a continuous geometry system versus so called deterministic approaches. The black
line is defined as the angular bisector of the blue and red line, a geometric primitive
offered by any system.

(a) starting position
(b) situation after a rotation of the

red line by 180 degrees

Figure 4.3: The angular bisector in continuous and deterministic geometry systems
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4 Simulation of Kempe Linkages using Cinderella and Xalci

When the input changes s.t. the red line performs a rotation by 180 degrees, Cinderella
continuously rotates the solid black line with half the speed. In constrast, many other
programs define the angular bisector as the line dividing the angle of smallest measure,
leading to an abrupt change of place when the red line passes the fixed blue, and
resulting in the dashed line. Obviously, such incontinuities are a highly undesired
performance in linkage simulation.

While some other implementations are—to variable extent—upgraded to realize
continuous motions, Cinderella uses a technique called “complex tracing” to not allow
discrete jumps in the first place. On the other hand, this implicates that it is not possible
to specify, for example, the angular bisector of the smallest angle, even if this is what
the user really wants.

Although this feature is not directly used in our application, the continuity also means
that Cinderella‘s locus tracing algorithm usually is able to draw the complete loci even
of complicated traces, while other programs are restricted to the curve parts reachable
within the tighter constraints of their object definitions. This is even intensified by the
inclusion of complex and infinite elements discussed in the previous subsection.

4.1.3 Automated Theorem Checking

A further unique selling point of Cinderella is an integrated theorem checker.
For every construction you can think of there are plenty of ways to describe the

desired result—Cinderella is able to decide whether they are equivalent.
As an example, assume we are given an arbitrary quadrilateral ABCD and the

midpoints E, F, G and H of it‘s sides. There is a theorem stating that then EFGH is
a parallelogram. This fact is recognized by Cinderella, as shown in the screenshots 4.4.
In the left corner, below the Euclidean viewport, we see Cinderella‘s construction text
window, which, besides the current position of the elements, shows their definition (the
“What?” column). Note that the order of elements corresponds to their construction;
each object is defined only by preceding objects. In particular, this means that definitions
have to be acyclic; no operation allowed in Cinderella other than dragging inputs with
some degree of freedom can change the currently existing design.

Finally, in the lower right the information about a single element is shown. Here the
line f is selected, along with it‘s definition as the parallel to e through G. Cinderella
automatically detects that f is incident to H, in addition to the trivial incidence with G.

The gathering of this information does not rely on a given set of theorems. Instead,
Cinderella randomly generates several possible instances continuously reachable from
the construction with respect to the definitions of elements. If an incidences is consistent
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Figure 4.4: Automatic theorem checking in Cinderella
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over all these tries, it is reported as proven. The results of the checks are used to some
extent to avoid unnecessary duplications of constructions and, thus, saving computation
time.

The number of tests performed is chosen to match an undocumented, but seemingly
very high probability. Since all calculations in Cinderella are done with floating point
arithmetics, Kortenkamp however has to admit that the theorem checker can be fooled
by constructions involving extreme intermediate values.

The combination of continuity guarantees and intrinsic theorem checking allows to
take up Abbott et al.’s criticism on Kempe‘s elementary linkages explained in section
3.4 from another point of view. The addressed problems of the occurences of additional
configurations are automatically avoided by Cinderella, since it‘s continuity model
simultaneously applies to all elements of the construction.

As long as we build upon a nondegenerate state in the beginning, incidences such as
the parallelity of the bars of the translators remain invariant under arbitrary movements.
Thus, even if we don’t define the parallelogram linkage by the geometric primitive
offered by the system, but position the hinges, say C of figure 3.3, on one of the two
intersection points of circles determining the bar lengths, Cinderella will remember this
choice throughout the construction.

4.1.4 CindyScript

An implementation of automated linkage generation would not have been possible
without some interface to instruct Cinderella which operations to perform. This is able
by the use of CindyScript, a functional high level language interpreted by Cinderella.
Besides common features of any object-oriented programming language it allows to
interactively modify the construction data. For this purpose both a command shell and
a script editor are offered; the latter can react on events like user input or redrawing of
the viewport.

The CindyScript interpreter is also part of Cinderella applets, thus predefined scripts
can also be used in web presentations. In addition, the authors recently added an
interface allowing foreign applets to execute CindyScript commands from the outside.
Our implementation almost exclusively uses this way of communication with Cinderella.

This feature still is in the testing stage, and it turned out to have several issues not
yet completely eliminated. In particular, Cinderella currently is not able to reliably give
feedback to the outside after execution of an instruction. As a necessary consequence,
our implementation controls Cinderella through a blindfold. Since we intendedly do not
try to double the geometric computations and cannot inspect the internal information
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of Cinderella, we are thus not yet completely able to adapt input parameters such as the
dimensions of the linkwork according to the restrictions of the viewport or the given
curve.

4.2 Visualization of Implicit Algebraic Curves using Xalci

The nature of Cinderella does not allow the dynamic realization of a Kempe mechanism
in full extent: we are able to see the linkage working when we move our free point
P, but the hinge S is uniquely determined by the rigid bars. Even worse: the linkage
usually is consistent even if P does not lie on the curve. Thus the least we need for a
proper simulation is an image of the curve to get a clue which path we have to move P
on.

Xalci provides this, and more. The Algorithms and Complexity working group at
the Max-Planck-Institute for Computer Science in Saarbrücken developed a tool to
analyze the topology of an arrangement of implicit algebraic curves in Q[x, y]. The
implementation features detection of singularities and extrema of curves and provides
the position of intersections of several curves. All necessary calculations are guaranteed
to give topological correct results, and the coordinates theoretically can be requested in
arbitrary precision.

While we have no use for curve arrangements since our implementation of Kempe‘s
linkwork only deals with one polynomial, the rasterization power of Xalci offers great
opportunities for our simulation. Utilizing the topological analysis of a curve, Xalci
can decide which regions the arcs of the curve lie in. Starting from the equally known
feature points of the curve, those arcs can then be traced out and rasterized.

The time-consuming part here is the dissection of the curve, which only has to
be done once. Afterwards, the rasterization runs in linear time in terms of both
the number of arcs and the horizontal resolution of the output. This high efficiency
convinced the researchers to provide a Flash-based web interface, to be found at
http://exacus.mpi-inf.mpg.de/cgi-bin/xalci.cgi, as an appetizer for the work to
come.

Since there is no stand-alone version of Xalci publicly available yet, Pavel Emeliya-
nenko kindly agreed to support our wish to use the web interface as a backend for
visualization purposes, and tailored an output option to our particular needs. This not
only allows us to to draw the curves, but by reattaching the arc segments we can gather
path information used for automatic smooth animation of the movement of P along
the curve. Xalci actually seems underchallenged by far by this task—while usually the
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correct visualization of implicit curves is considered a very expensive computation,
neither Xalci nor the web transport turned out to be a bottleneck in our simulation.

The interface still might be a subject to change during the further developement of
Xalci.

4.3 Geometric Primitives in Linkage Simulation

As mentioned in the introductory paragraphs to this chapter, in a DGS like Cinderella
you do not have the possibilities nor the needs to mimic a linkwork in every detail. How-
ever, we can simulate all geometric computations performed during the construction
algorithm presented in section 3.2.

Since arbitrary reals cannot be represented in Cinderella, we demand the input
polynomial to have rational coefficients, as well as m, n ∈ Q. A quick look on the
transformations done to obtain f̃m,n from f shows that all coefficents as,t, bs,t and c are
rational, too. The reader might ask whether this is really necessary because Cinderella
uses floating-point arithmetics, so results will be inexact anyway, and he will have
a point there. Approximating arbitrary reals will yield the same precision as our
approach. But our goal is a theoretically correct implementation, which at least has to
feature correct algorithms, even if they cannot be handled in full extent by the tools
used, and there are lengths of irrational measure (such as π) not constructible with
the primitive operations allowed by any ruler and compass approach regardless of the
underlying implementation.

Our implementation proceeds in the same steps as Kempe‘s description:

0. • We start by establishing the coordinate system by defining points O = (0, 0)
and X = (1, 0) at fixed coordinates and draw the unit circle through X
around O.

P is initialized to an arbitrary starting position within the open set reachable
by the bars avoiding the degenerate case where the supporting lines of the
bars overlap. Obviously, a preferable choice is some point on the curve; since
P is free to move anyway, we can safely use the positioning facilities offered
by Cinderella.

• Since m and n are rational numbers, they are constructible, meaning there
are ruler-compass constructions to find a point mX with distance m to O
and m − 1 to X, only depending on O and X.1 The procedure allowing

1A more formal definition of the constructability of x is that x is contained in an iterated algebraic field
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to generate mX and nX is presented in step 5 and does not depend on
intermediate elements; so we can for now assume to have given points from
which we can take the lengths m and n to the origin and draw circles of
radius m around O and n around P.

One of their intersection points is chosen as a possible instance of A1. Joins,
i.e. defining a line (achieved by Peaucellier cells in linkages), are primitive
operations in a DGS as well as the drawing of parallels through given points,
so we can determine the point B1 as the intersection of the parallels to OA1

through P and A1P through O.

1. In Cinderella, contrary to deterministic geometry systems, we have to face the
same problems regarding the orientation of the y-axis discussed in section 3.2.
Just choosing a third free point will prevent the program to apply it‘s incidence
checking on elements depending on the axis, since the defining third point might
move later. Thus we have to take any of the two intersections of the unit circle
and the y-axis (defined as the perpendicular on OX through O) for Y.

This is just mentioned for the sake of completeness and does not cause any
trouble, because after all the same instruction sequence will always cause the
same result to appear on the screen.

2. We now generate points on the unit circle representing the angles ϕ and θ. This
can be done by dividing the distances of A1 and B1 to O by m and n; again, we
refer to step 5.

For clearness, in figure 4.5 (a) the points are already assumed to be on the unit
circle. Then to yield a multiple of an angle (θ, corresponding to B1, in the figure)
it is sufficient to iteratively draw circles around Bt through Bt−1, starting with
B1 and X. There is at most one additional intersection of these circles with the
unit circle besides Bt−1; this point gives Bt+1 with angle ]XOBt+1 = (t + 1)θ by
congruence of 4Bt−1OBt and 4BtOBt+1.

If there is no additional intersection, ]Bt−1OBt = π, which is a degenerate case
not induced by boundary constraints other than the position of P, which is

extension of degree two of Q. The field operations +, −, · and ·· are linear operations, which can be
achieved by the ruler; additionaly, the constructible numbers are closed under

√
·, which corresponds

to the solving of polynomial equations in degree two, or, geometrically, intersections of circles and
lines or circles.

All operations but root extraction involved are used and presented throughout this construction; for
a more concise treatment of the topic see e.g. [Lab08] or introductory textbooks on algebraic number
theory.
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(a) multiplication of angles (b) addition of angles

Figure 4.5: Multiplication and addition of angles

allowed to change. Cinderella‘s theorem checker thus finds valid instances where
Bt+1 is well-defined, and allows the construction of “the intersection other than
Bt−1” nevertheless.

3. Addition of angles (figure 4.5 (b)) follows a similar idea. To construct a C1,1 as a
representant of ϕ + θ, we take the distance XB1 by the compass and draw a circle
around A1.

Now there really are two intersections between circles not yet known, so we need
additional information to decide which one corresponds to addition and which
to subtraction. We thus take the second intersection but B1 of the unit circle and a
parallel to XA1 through B1 and anticipate in calling it C1,−1, the subtraction result.
Now we know |XB1| = |A1C1,−1|, so 4XOB1 and 4C1,−1OA1 are congruent, and
we conclude ]XOC1,−1 = ]XOA1 −]C1,−1OA1 = ]XOA1 −]XOB1 = ϕ− θ,
thus ]XOC1,1 = ]XOC1,−1 +]C1,−1OC1,1 = ϕ− θ + 2θ = ϕ + θ for the remaining
intersection C1,1.

4. Since we are given an representant Y for π
2 , subtraction of π

2 can be achieved in
the same manner, starting from the mirror point of A1 w.r.t. O and adding π

2 .

5. Now we consider the multiplication of lengths by rationals, say the construction
of a

b X from X, where a, b ∈ Z. The constructions can be rotated arbitrarily and
generalize for the scaling of the Cs,t and Ds,t by as,t and bs,t.

We start with integral multiplication of X to aX and bX, to later divide two
lengths. A simple, but ineffective approach on integral multiplication is iteratively
adding OX using circle constructions. This is sufficient for the angle multipli-
cations, where typically the highest multiple (corresponding to the degree d of
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Figure 4.6: Multiplication of lengths

Figure 4.7: Division of lengths by application of the intercept theorem

the polynomial f ) is rather low; however, this usually is not the case for the
coefficients.

Instead, we first construct all powers of two 2iX using circles in corresponding
sizes as shown in figure 4.6. Then we add the required powers to get the final
result (5X here). This is done using the depicted parallels construction, equivalent
to the translator linkage, which moves OX (or some arbitrary multiple) to 4X,
yielding 5X. Thus we achieve a reduction of the construction complexity from
O(a) to O(log a), compared to the trivial solution.

Division is allowed by the intercept theorem, as depicted in figure 4.7. Starting
from aX and bX, we join the divisor bX with Y. The intersection S of the parallel
though the dividend aX with the y-axis satisfies a

b = |OaX|
|ObX| = |OS|

|OY| , thus S = a
b Y.

Rotation back to the x-axis yields a
b X.

Note that the orientation of the y-axis matters for none of the constructions
mentioned above, so we are free to use −Y instead if we are not yet able to
decide which point corresponds to the angle rotated by 90 degrees clockwise. For
a length not coinciding with the x-axis, we imagine any of the two intersections
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of a perpendicular through O and the unit circle as a local Y. This is especially
important for getting the position of the points A1 and B1 on the unit circle in
step 1.

6. Finally, the easiest step throughout the simulation is the summation of all oc-
curing terms. Since we do not need to care about fixed bar lengths—those are
automatically adapted by the DGS—we can employ the simple parallelogram
construction of figure 2.4 (a).

4.4 Presentation of Our Simulation of Kempe Linkages

We want to complete this chapter with a presentation of our implementation, accessible
to anyone interested at http://www.math.uni-sb.de/ag/schreyer/Kempe-Linkage/.

Our solution is written in Java and designed as an applet, a decision made to ease
the communication with Cinderella. The exact rational arithmetics needed for the
transformation of f to f̃m,n are provided by the free open source JScience library [JSc].
The complete application amounts to approximately 6500 lines of code, including the
Xalci interface; sources are available on request.

4.4.1 The User Interface

Figure 4.8 shows the user interface of our program, giving an overview of the function-
ality.

Using Xalci‘s rasterization of the curve, we are able to approximate coordinates of
a random point P on the curve within the current viewport. Consequently, we offer
automatical adaption of the bar length s.t. P is reached without forcing the initial
parallelogram to an excessive elongation.

Up to now, there is no support for shifting the viewport of a Cinderella applet
from outside, nor can we obtain the coordinates of the shown area. As a necessary
consequence, we made the obvious decision to fix the view around the origin of the
coordinate system. Therefore we offer the translation of the straight line S moves on to
the y-axis, a part of which is always visible. For a minimum of convenience, we are
able to allow arbitrary zooming.

Due to the complexity of the construction the output tends to become extremely
messy; to face this inevitable problem, several intermediate construction steps can be
hidden from the user. The defaults are reasonably chosen to get an idea of the dynamics
of the construction without to much clutter (figure 4.9).
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Figure 4.8: The graphical user interface of our implementation

For a deeper insight to the construction, we log all steps done throughout the con-
struction in the CindyScript instruction format. Thus the user can redo the operations
in a stand-alone instance of Cinderella and examine the simulation in every detail,
although without our interface to Xalci. For short requests, the user can also use a
CindyScript command line inside our application.

4.4.2 Animations

Sadly, a printout cannot express the dynamic nature of an animation very well. At least
we can give some screenshots throughout a simulation (figures 4.10 and 4.11). We
trace the motion of S while P moves along the curve C = V(y2 + x3 − x2); our setup
uses m = n = 1. In the trigonometric form of the polynomial, no offset by constant
terms occurs, so the line S stays on is the y-axis.

When P enters the viewport into the second quadrant, S comes along from above.
Through the self-intersection of the curve in the origin, S continuously passes (0, 1),
to oscillate around the origin while P describes the loop of C. When P leaves the
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Figure 4.9: A view of all intermediate elements of a construction, in contrast to a more
tidy version.
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Figure 4.10: Animation stills of a Kempe linkage simulation of y2 = x2 − x3
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Figure 4.11: Animation stills of a Kempe linkage simulation of y2 = x2 − x3 (cont‘d)

viewport along the path in the third quadrant, S moves down towards (0,−∞). Since
a construction mirrored w.r.t. the x-axis is equivalent, for another choice of a starting
coordinates of P we may get the reflected linkage.

4.4.3 Complicated Curves and Statistics

Our implementation allows the input of arbitrary polynomials in Q[x, y], although the
constructions may not be recognizable anymore.

Inspection in stand-alone Cinderella proved the correct handling of singularities like
the isolated origin point on the curve y2 = x3 − x2. For every direction in which P
moves out of the origin S leaves it‘s straight line; the configuration describing P is only
continuously reachable along paths in the complex plane when the real part of the S‘
x-coordinate shall remain on the line.

Curves which cannot be rationally parametrized like the smooth elliptic curve in
figure 4.12 (a) impose no difficulty on our approach. The instruction sequences for
higher degree curves are generated well and have been checked for consistency for
random examples up to degree eight; however, the applet design currently hardly
allows reasonably smooth movements of complicated curves of degree four.

The complexity of our constructions exceeds the O(d2) bound proven in section 3.3,
since we have to deal with the geometric equivalent of rational arithmetics. Simple
curves with one-digit coefficients up to degree three usually stay below 500 CindyScript
instructions. The apple-shaped curve in figure 4.12 (c) requires 3604 operations without
translation of the straight line, and a randomly polynomial of degree eight with
integer coefficients in the range {−12, . . . , 12} takes about 12000 primitives, without
the translation, too. Anything even more complicated exceeds the usual memory limits
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(a) The smooth elliptic curve
y2 = x3 − x2 (b) A quartic

(c) A curve of degree seven, taken from the Xalci gallery [Alg]

Figure 4.12: Some complicated examples
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of Java‘s virtual machine; we do not have to mention that the graphical output takes far
too long to be of more than theoretical interest.

4.5 Conclusion

While we have been able to give a proof-of-concept implementation, we have to admit
that the examination of the results is no fun so far. The interface to Cinderella, while
providing a comprehensive choice of geometric operations, is just not designed for
killer applications like Kempe linkages. However, there is reason to hope that our
implementation will motivate others to use the said interface, and thus invite the
Cinderella authors to refine it. Even if our project will not benefit, others certainly will.

Still, no dynamical geometry system existing by now allows to perform the task
of moving S to trace out the curve, which is the more interesting direction of the
translation. Currently we are not aware of any solution to this. Gao et al. mention their
software Geometry Expert to perform this task, but apparently it is lost, and there is no
interest in reanimating it.

Finally, further investigations can be done in the field of lower bounds of exact
linkage complexity for particular classes of curves, which still is a widely uncharted
terrain.
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